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Why study CP-violation?
• To explain baryon asymmetry of the Universe we need

sources of CP-violation from beyond the Standard Model

• SM predicts CPV effects to be relatively small

• Many New Physics models may significantly increase
these effects [hep-ph/9803370]:

– Multi-Higgs Doublet models with no “Natural Flavor Conservation”

– Supersymmetric models with “Effective SUSY”

– Supersymmetric models with “R-Parity Violation”

– Left-Right Symmetric models

– 4th generation models

– Z-mediated Flavor Changing Neutral Currents

Measurement of the large CPV

where it is predicted to be small

may reveal NP
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Why CP-violation in B mesons?

• B-factories excluded large NP contributions from tree-level B-decays

• SM predicts small CP phases at loop-level B-decays but large phases

from NP are still possible [hep-ph/9803370, hep-ph/0210167]

• SM also predicts small direct CP asymmetries in B mesons, which

NP may increase

• The decays Bs → J/ψφ (CP-violating phase) and

B+ → J/ψK (CP asymmetry) are ideal for

investigating these effects

I am going to talk about these two analyses performed

at DØ experiment at Tevatron
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Tevatron Collider at Fermilab

• 36 × 36 pp̄ bunches, 1012 (1010) p (p̄) per bunch

• Bunches collide every 396 ns at CM energy 1.96 TeV

• Record Linst = 315 × 1030 cm−2 sec−1

•
R

Ldt up to 50 pb−1/week!

• Integrated L ∼ 3.4 fb−1 on tape, up to ∼ 2.8 fb−1

used
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DØ Detector

• Silicon and fiber trackers immersed into

2 T solenoid, coverage |η| < 3

– Precise vertexing and tracking

– New Layer 0 silicon on beam pipe

in 2006 improves impact parameter

resolution

• Muon system (central + forward),

coverage |η| < 2

– Includes its own magnet – toroid

• Two magnets – solenoid and toroid –

flip polarities every two weeks

– Unique feature of DØ

– Diminishes detector asymmetries
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Measurement of direct CP-violation in
B+

→ J/ψK+ decay
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The decay B± → J/ψK± goes via two diagrams:
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• Their interference produces small asymmetry ACP = 0.003

[hep-ph/0605080]

• New Physics can significantly enhance this asymmetry
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Analysis outline
• We divide J/ψK sample into 8 categories according to:

☞ Solenoid polarity, β

☞ Sign of kaon pseudorapidity, γ

☞ Kaon charge, q

• Number of events in each category:

nβγq = 1
4Nǫ

β(1 + qAraw)(1 + γAdet)(1 + qγAfb)(1 + qβAqβ)(1 + βγAβγ)(1 + qβγAro)

where

– N - number of signal events in the sample

– ǫβ - fraction of integrated luminosity with magnet polarity β (ǫ+ + ǫ− = 1)

– Araw - integrated raw charge asymmetry we want to measure

– Afb - forward-backward asymmetry (more kaons go in proton direction)

– Adet - north-south asymmetry of the detector

– Aqβγ - decrease of acceptance of kaons bent by the magnet

– Aβγ - detector forward-backward asymmetry remaining after magnet polarity flip

– Aqβ - change in kaon reconstruction efficiency after magnet polarity flip

• Fit for 8 nβγq =⇒ obtain 8 equations with 8 unknowns

• Solve for Araw =⇒ obtain ACP (B+ → J/ψK+)
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Mass distribution of J/ψK
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Unbinned likelihood fit of the inv. mass distribution of µµK system

βγq J/ψK J/ψπ J/ψK∗0 Background

+ + + 5104±87 337 ± 44 692 ± 77 4079 ± 151

+ — + 5131±87 222 ± 42 689 ± 78 4170 ± 151

+ + — 4999±85 212 ± 40 767 ± 76 3978 ± 149

+ — — 5098±86 144 ± 38 523 ± 77 4395 ± 150

— + + 4973±86 158 ± 41 578 ± 78 4397 ± 151

— — + 5039±86 127 ± 39 663 ± 78 4281 ± 150

— + — 4965±85 242 ± 41 794 ± 76 3880 ± 148

— — — 4906±84 138 ± 39 724 ± 75 4006 ± 147

Total 40222 ± 242 1578 ± 119 5429 ± 217 33192 ± 425
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Asymmetries
J/ψK J/ψπ Background

N 40217±243 1577±118 33189±424

ǫ+ 0.5060±0.0030 0.5060±0.0030 0.5010±0.0064

Araw -0.0070±0.0060 -0.0887±0.0807 -0.0205±0.0128

Afb 0.0013±0.0060 0.0453±0.0890 -0.0170±0.0128

Adet -0.0033±0.0060 0.2061±0.0826 -0.0158±0.0128

Aro -0.0050±0.0060 -0.0207±0.0873 -0.0024±0.0128

Aβγ 0.0001±0.0060 -0.1896±0.0823 0.0274±0.0128

Aqβ -0.0030±0.0060 0.0499±0.0801 -0.0145±0.0128

Kaonic Araw has to be corrected for kaon asymmetry:

• Reaction K− +N → hyperon + π has no analog K+ +N ,

therefore N(K+) > N(K−)
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Correction for kaon asymmetry
• This asymmetry measured in the channel

c → D∗+ → D0π+, D0 → µ+νK− (2.8 fb−1)

• No CPV is expected in this decay [hep-ph/0311371]

• Plot ∆m = m(µKπ) − m(µK) distributions: wrong-sign (qµ, qπ, qK are the same) and

right-sign (qK is different)

• Width of the right-sign peak depends on m(µK) =⇒ bin in m(µK)

• Background under the peak is sideband-subtracted using events at high ∆m (far from the peak)

• For every βγq combination perform sideband-subtraction in all m(µK) bins, sum the results

=⇒ obtain 8 numbers Nβγ
q

• Solve for corresponding raw kaon asymmetry
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Correction for kaon asymmetry
This raw kaon asymmetry must be

• corrected for sample composition

• averaged over kaon momentum

– Cross-section σ(K+N) and, therefore, the kaon asymmetry itself

depend on kaon momentum

• subtracted from Araw

to obtain:

ACP (B+ → J/ψK+) = 0.0075 ± 0.0061(stat.) ± 0.0027(syst.)

For pions such correction is covered by systematic error:

ACP (B+ → J/ψπ+) = −0.0887 ± 0.0807(stat.) ± 0.0283(syst.)
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Results

• Asymmetry ACP (B+ → J/ψK+) is consistent with zero

• Precision is of the order of SM prediction

• Consistent with current PDG value ACP = 0.015 ± 0.017,

but factor of three better precision

• Asymmetry ACP (B+ → J/ψπ+) is also consistent with zero

• Also consistent with PDG value ACP = 0.09 ± 0.08

• Has a competitive precision
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Measurement of CP-violation in
Bs → J/ψφ decay
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CKM matrix
CKM matrix relates quark weak flavor and mass eigenstates:
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• In SM CP-violation is governed by only one parameter η

(complex phase)

• NP may provide plenty of new complex phases
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CKM Matrix Unitarity Condition

V †
CKMVCKM = 1

This translates into:

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0

V b*dV cc

Vt Vt b*dRt =V b*dV cc

(1−λ /2)2
ρ= ρ

(1−λ /2)2

(0,0) (1,0)

( η),

V V b*dR = u u
b

ρ

=η η

βγ

α

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0

( η),ρV V b*u us

V b*V ccs

(0,0) (1,0)

Vt Vt b*s

V b*V ccs

sβ

• Both triangles have the same area, proportional to CPV level

• The triangles involve different elements of CKM matrix

– First triangle provides for measurement of sin 2β from Bd → J/ψKS decay

– Similarly, 2nd triangle provides for sin 2βs from Bs → J/ψφ (harder to do)
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Bs-mixing
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Weak eigenstates: i ddt

(

|Bs(t)〉
|Bs(t)〉

)

= (M − i
2Γ)

(

|Bs(t)〉
|Bs(t)〉

)

CP eigenstates:
|Bodds 〉=|Bs(t)〉−|Bs(t)〉

|Bevens 〉=|Bs(t)〉+|Bs(t)〉

Mass eigenstates:
|BHeavys 〉=p|Bs(t)〉−q|Bs(t)〉

|B
Light
s 〉=p|Bs(t)〉+q|Bs(t)〉

Observables:

– ∆Ms = MH −ML ≈ 2|Ms
12|

– ∆ΓCPs = Γeven − Γodd ≈ 2|Γs12|
– ∆Γs = ΓL − ΓH ≈ 2|Γs12| cosφs,

where CP-violating phase φs = arg
(

−Ms
12

Γs12

)

≈ 0.004 in SM

– Average lifetime τ ≡ 1/Γ, where Γ = 1
2(ΓL + ΓH)
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New Physics Phase φNPs

• In Standard Model both βSMs = 0.02 and φSMs = −0.004 are small,

beyond current experimental reach

• New Physics may introduce a new phase φNPs such that:

☞ 2βs = 2βSMs − φNPs

☞ φs = φSMs + φNPs

• If φNPs is large then φs ≈ −2βs ≈ φNPs

We use Bs → J/ψφ decay to measure this phase
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Vector amplitudes
Bs → J/ψ + φ

Spin 0 → 1 + 1 (ℓ = 0, 1, 2)

J/ψφ system is a mixture of three different states

with following time-dependent amplitudes:

• A0(t) – longitudinal polarization, ℓ = 0, 2, CP = +

• A||(t) – transverse polarization with parallel spin orientation, ℓ = 0, 2, CP = +

• A⊥(t) – transverse polarization with perpendicular spin orientation, ℓ = 1, CP = –

|A0(0)|2 + |A||(0)|2 + |A⊥(0)|2 = 1

Observables:

• |A⊥(0)|
• |A0(0)|2 − |A||(0)|2
• δ1 ≡ arg(A∗

||(0)A⊥(0)) = −δ|| + δ⊥

• δ2 ≡ arg(A∗
0(0)A⊥(0)) = −δ0 + δ⊥

δ1 and δ2 are CP-conserving strong phases
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Angles

• x-axis – direction of φ momentum in

J/ψ rest frame

• x-y plane – defined by K+ and K−

momenta in J/ψ rest frame

• Angle θ (transversity) – between z-axis

and µ+ (in J/ψ rest frame)

• Angle φ – between K+ and µ+

projection (in J/ψ rest frame)

• Angle ψ – between x-axis and K+

(in φ rest frame)
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Differential rate
Time-dependent differential rate:

d4Γ

d cos θ dφ d cosψ dt
=

2 cos2ψ(1 − sin2 θ cos2 φ) · |A0(t)|2

+sin2ψ(1 − sin2 θ sin2 φ) · |A||(t)|2

+sin2ψ sin2 θ · |A⊥(t)|2

+
1√
2

sin 2ψ sin2 θ sin 2φ · Re(A∗
0(t)A||(t))

+
1√
2

sin 2ψ sin2 θ sin 2θ cosφ · Im(A∗
0(t)A⊥(t))

− sin2ψ sin 2θ sinφ · Im(A∗
||(t)A⊥(t))
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Amplitudes
(no Bs initial flavor tagging)

|A0(t)|
2 = |A0(0)|

2 · T+

|A||(t)|
2 = |A||(0)|

2 · T+

|A⊥(t)|2 = |A⊥(0)|2 · T−

Re(A∗
0(t)A||(t)) = |A0(0)| · |A||(0)| · cos(δ2 − δ1) · T+

Im(A∗
0(t)A⊥(t)) = |A0(0)| · |A⊥(0)| · [−1

2(e
−ΓHt − e−ΓLt) sinφs cos δ2]

Im(A∗
||(t)A⊥(t)) = |A||(0)| · |A⊥(0)| · [−1

2(e
−ΓHt − e−ΓLt) sinφs cos δ1]

where

T± = 1
2[(1 ± cosφs)e

−ΓLt + (1 ∓ cosφs)e
−ΓHt]

• Sensitive to ΓL,ΓH, φs, δ1, δ2

• Not sensitive to ∆Ms

• Equations are invariant under simultaneous transformation φs → π − φs,

∆Γ → −∆Γ, δ1 → π − δ1 and δ2 → π − δ2 =⇒ four-fold ambiguity
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Amplitudes
(with Bs initial flavor tagging)
Upper signs: Bs(0) = |B0

s〉, lower signs: Bs(0) = |B0
s〉

|A0(t)|
2 = |A0(0)|

2 · [T+±e
−Γt sinφs sin(∆Mst)]

|A||(t)|
2 = |A||(0)|

2 · [T+±e
−Γt sinφs sin(∆Mst)]

|A⊥(t)|2 = |A⊥(0)|2 · [T−∓e
−Γt sinφs sin(∆Mst)]

Re(A∗
0(t)A||(t)) = |A0(0)| · |A||(0)| · cos(δ2 − δ1)[T+±e

−Γt sinφs sin(∆Mst)]

Im(A∗
0(t)A⊥(t)) = |A0(0)|·|A⊥(0)|·[e−Γt(± sin δ2 cos(∆Mst) ∓ cos δ2 sin(∆Mst) cosφs)−

1
2(e−ΓHt−e−ΓLt) sinφs cos δ2]

Im(A∗
||
(t)A⊥(t)) = |A||(0)|·|A⊥(0)|·[e−Γt(± sin δ1 cos(∆Mst) ∓ cos δ1 sin(∆Mst) cosφs)−

1
2(e−ΓHt−e−ΓLt) sinφs cos δ1]

where

T± = 1
2[(1 ± cosφs)e

−ΓLt + (1 ∓ cosφs)e
−ΓHt]
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Amplitudes
(with Bs initial flavor tagging)

• Sensitive to ΓL,ΓH, φs, δ1, δ2,∆Ms

• But we do not determine ∆Ms, but fix it to CDF’s measurement [PRL 97, 242003 (2006)]

• Sign ambiguity for φs for given ∆Γ is resolved =⇒ two-fold ambiguity

☞ For given tagged event:

rate = p(Bs)· rate (Bs) + (1 − p(Bs))· rate (Bs)

☞ If event is not tagged p(Bs) = 0.5 =⇒ all Bs flavor terms cancel
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A few words about Bs flavor tagging
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Bs flavor tagging
We need to determine (tag) Bs meson production flavor which may be different from

decay flavor
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Two main classes of tagging methods:

☞ Same-Side Tagging: “One-track”, Qsame...

☞ Opposite-Side Tagging: jet-charge, soft-lepton, Qopp...

We develop “Comb. SST”, “Comb. OST” and merge them into single “All” tagger
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Tagging characteristics:
.

b
−

u

u
−

s

s
−

+
K

sB

• Number of Right-Sign (Bs-K
+ and Bs-K

−) correlations, NRS

• Number of mistagged Wrong-Sign

(e.g., Bs-K
− and Bs-K

+) correlations, NWS

• Number of events with no tag found, NNT

• Tagging efficiency ǫ =
Ntagged
Ntotal

= NRS+NWS
NRS+NWS+NNT

and dilution D = NRS−NWS
NRS+NWS

• Tagging power ǫD2 ⇐= to be maximized
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Tagging in MC and data
• Same-side tagging:

☞ Bs production flavor is obtained from MC truth information

☞ SST analysis can only be done on MC

☞ SST can be verified on self-tagging Bu → J/ψK sample

– Bu flavor is determined from kaon charge =⇒ in both data and MC

– The agreement between dilutions in data and MC is reasonably good

which justifies using SST in Bs decays

• Opposite-side tagging:

☞ Opposite-side flavor tagging does not depend on the B-meson flavor

☞ Can use Bd → νµµD
∗− data sample to develop OST for Bs [PRD74, 112002 (2006)]
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Taggers’ combination

• To obtain “Combined SST” we merge different SST algorithms

by using likelihood ratio method

• Similar thing is done for “Combined OST”

– Unfortunately, OST has low efficiency

– So, when OST is not present, we use the Qopp obtained as

pt-weighted
∑

qi of all tracks on opposite side

– The Qopp has 100% tagging efficiency, but lower dilution

• Finally, both “combined SST” and “combined OST”/Qopp

are amalgamated into single “All” tagger

• This single tagger has pretty high power ǫD2 ≈ 4-5%
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Tagger verification on data/MC
SST in Bu → J/ψK
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Back to Bs → J/ψφ Analysis
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Likelihood function
☞ We perform simultaneous unbinned likelihood fit

to the Bs mass, lifetime and three angles

☞ Altogether, there are 33 free parameters in the fit

L =
∏N
i=1[fsigF i

sig + (1 − fsig)F i
bkg],

where

• N – total number of events

• fsig – signal fraction

• F i
sig/bkg – signal/background distribution the fit variables

Background:

– “Prompt” J/ψ coming directly from primary vertex

– “Non-prompt” J/ψ coming from a b-hadron
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Fit constraints
– Mixing parameter ∆Ms is constrained to CDF’s measurement

[PRL 97, 242003 (2006)]

– Strong phases δ1 and δ2 are constrained from

BaBar’s measurements in B → J/ψK∗0
[hep-ex/0704.0522]

• We have two-fold ambiguity

☞ ∆Γ > 0, cosφs > 0, cos δ1 > 0, cos δ2 < 0

☞ ∆Γ < 0, cosφs < 0, cos δ1 < 0, cos δ2 > 0

• For B → J/ψK∗0 the values δ1 = −0.46 and δ2 = 2.92 are

preferred over δ1 = 3.60 and δ2 = 0.22 on both theoretical and

experimental grounds [hep-ex/0704.3575, page 153], [PRD64, 117503]

• We constrain δ1 = −0.46 and δ2 = 2.92 with narrow Gaussians to

allow for SU(2) symmetry breaking
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Fit results
Invariant mass of

J/ψφ system
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Fit results

∆Γ = 0.14 ± 0.07(stat. + syst.) ps−1 (when φs ≡ φSMs )

τ = 1.53 ± 0.05 ± 0.01 ps
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Fit results
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Fit results
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Fit results
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[hep-ex/0802.2255, Sub. to PRL]

Probability of SM value is ∼ 7%
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Fit results

Likelihood profiles:
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Numerical results
Variable Free φs φs ≡ φSMs ∆Γs ≡ ∆ΓSMs · | cosφs|
τ , ps 1.52±0.06 1.53±0.06 1.49±0.05

∆Γs (ps−1) 0.19±0.07 0.14±0.07 0.083±0.018

A⊥(0) 0.41±0.04 0.4±0.04 0.45±0.03

|A0(0)|2 − |A||(0)|2 0.34±0.05 0.35±0.04 0.33±0.04

δ1 -0.52±0.42 -0.48±0.45 -0.47±0.42

δ2 3.17±0.39 3.19±0.43 3.21±0.40

φs −0.57+0.24
−0.30 ≡ −0.04 -0.46±0.28

∆Ms (ps−1) ≡ 17.77 ≡ 17.77 ≡ 17.77
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Results without tagging

For comparison: untagged 1.1 fb−1 analysis
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Comparison to other experiments

Shown is the DØ sign convention for φs, which is opposite to the CDF’s 2βs [hep-ex/0712.2397]

• CDF did not provide central value, but only variation limits for 2βs

• CDF is hoping to have an updated result with a larger dataset by ICHEP’08
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New Physics?

NP may change Bs Hamiltonian parameters by

introducing a complex number ∆s ≡ |∆s|·e
iφNPs

[hep-ph/0612167] as follows:

• ∆Ms = ∆MSM
s · |∆s|

• φs = φSMs + φNPs

∆s = 1 in SM

Im∆s vs Re∆s

• Red: from CDF’s ∆Ms measurement [PRL 97, 242003 (2006)]

• Yellow: from ∆Γs/∆Ms with ∆Γs from DØ [PRL98, 121801 (2007)] - untagged 1.1 fb−1 analysis

• Blue: from DØ ’s asSL measurement [PRD 76, 057101 (2007)]

• Forward and backward regions: from sign of ∆Γs from DØ [PRL98, 121801 (2007)] - untagged 1.1 fb−1

analysis

• Dashed wedge: from φs from DØ [PRL98, 121801 (2007)] - untagged 1.1 fb−1 analysis

• In SM all regions should intersect in point (1,0)

Experimental situation (black area) shows some deviation from SM

which may grow as the uncertainties decrease
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Conclusion

• Measured large CP-violation where it is predicted to be small

may reveal New Physics

• Direct CP asymmetry in B → J/ψK decay is consistent with zero

• The uncertainty on this asymmetry is of order of SM prediction

• The large phase φs in Bs → J/ψφ decay may indicate New Physics

• The uncertainty on φs is statistically dominated =⇒ more data needs

to be analyzed to be sure that we actually see the New Physics

• This will happen in the nearest future
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Backup
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Toroid polarity

• Reversing magnet polarity helps

reduce detector asymmetries in muon

reconstruction

• Systematics is also diminished
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Obtaining D∗ asymmetry
• For each βγq combination we bin the sample in m(µK)

• For each bin in m(µK) we choose signal and sideband regions for

right-sign and wrong-sign charge correlations

• Signal region is chosen to maximize S/
√
S +B for each m(µK) bin

• Sideband region is chosen to be 0.19 GeV/c2 < ∆m < 0.22 GeV/c2

• B = Nsig.reg.
wrong

Nsideband
right

Nsideband
wrong

• S = Nsig.reg.
right −B

• Then numbers of signal events in all m(µK) bins are added up

=⇒ obtain nβγq

• Solve system of equations to find asymmetry
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D∗ sample composition
Mode Branching, %

µ+K−ν 3.51 ± 0.11

µ+K∗−ν 2.17 ± 0.16

K∗− → K−π0 1/3· Br(K∗)

K∗− → K0π− 2/3· Br(K∗)

µ+π−ν 0.28 ± 0.02

µ+ρ−ν, ρ− → π−π0 0.19±0.04

Corrected kaon asymmetry AK(D∗) = A(D∗)/fK
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Kaon asymmetry AK(D∗) vs. pK
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The average kaon asymmetry is

AK =

Nbins
∑

i=1

AK,i(D
∗)
Ni(J/ψK)

N(J/ψK)
= −0.0145 ± 0.0010(stat.)
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Direct CPV systematics
Source J/ψK J/ψπ

Variation of fixed fit parameters by ±1σ 0.0002 0.0004

Variation of fiting range 0.0004 0.0129

Shape of J/ψπ and J/ψK∗ contribution 0.0025 0.0252

Bkg from qµ · qπ < 0 0.0008 –

Varying rec. eff. for D0 contribution to D∗ sample 0.0005 –

Asymmetry in π reconstruction – 0.0002

Total 0.0027 0.0283
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SST Algorithms
All used SST algorithms can be divided into two groups:

1. One-track algorithms which select a particular track

and infer b-quark flavor from its charge

2. Many-track algorithms which use pt-weighted average charge

of all tracks around ~p(Bs): QSST (pt, κ) =
P

q·pκt
P

pκt

• Often different one-track taggers pick up the same track =⇒ highly correlated

• Let’s pick the best tagger from each group

• Best one-track tagger: “Min. ∆R =
√

∆φ2 + ∆η2”

• Best many-track tagger: QSST (pt, κ = 0.6)”

• Let’s combine both these taggers together to improve ǫD2
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List of used same-side taggers:
We are using the following SSTs (one-track and many-track taggers):

☞ Min. prel
t

☞ Max. prel
L

☞ Max. pt

☞ Min. |∆~P | ≡ |~p(Bs) − ~p(K)|

☞ Best: Min. ∆R

☞ Max. cosα

☞ Min. cos θ∗

☞ Max. cos θ∗

☞ Min. m(BsK)

☞ Random track

☞ Qjet(pt, κ) =
P

q·pκt
P

pκt

☞ Qjet(p
rel
t , κ) =

P

q·(prelt )κ

P

(prelt )κ

☞ Qjet(p
rel
L , κ) =

P

q·(prelL )κ

P

(prel
L

)κ

☞ Best: Qjet(pt, κ = 0.6)

P

P

P

P

P P

P

t
rel

K

∆

∆

K
+

rel
l

µ

µDs

Ds

 

Cone     R

α
* − decay angleθ

sKB

s

K

direction in lab frame
θ*

B

( )

– One-track: prel
t and prel

L are ⊥ and || components of SST candidate’s momentum ~p(K) w.r.t

~p(BsK)

– ∆R ≡
p

∆φ2 + ∆η2 and angle α are taken between ~p(Bs) and ~p(K)

– θ∗ – decay angle of BsK-system, i.e. angle between directions

of ~p(BsK) and ~p(Bs) in reference frame of BsK system

– κ = 0.0, 0.1, 0.2, ...1.0

– Qjet: p
rel
t and prelL are ⊥ and || components of SST candidate’s momentum ~p(K) w.r.t ~p(Bs)
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Combination of two SST methods
• We obtain P.D.F.s of “q · ∆R” for “Min. ∆R” tracks with charge q for b and b̄ quarks

• If their ratio y∆R = f(b)

f(b)
> 1 then it was b-quark, otherwise b̄-quark

• Calculate “joint P.D.F. ratio” for “Min. ∆R” and QSST (pt, κ = 0.6) taggers: ysst = y∆R ·yQ

• Introduce a variable dsst =
1−ysst
1+ysst

and determine b-quark flavor for each event from its sign

• Calculate even-by-event dilution D as a function of dsst

“Min. ∆R” P.D.F.s QSST (pt, κ = 0.6) P.D.F.s “Joint P.D.F.s”
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ǫD2 for combined SST
MC Tagger ǫ,% D,% “Unbinned” ǫD2, % “Binned” ǫD2, %

B
u

→
J
/
ψ
K

d
at

a “Min. ∆R” 82.1 ± 1.1 20.2 ± 0.7 3.34 ± 0.22 3.73 ± 0.24

“Qjet(pt, 0.6)” 88.4 ± 1.2 19.3 ± 0.6 3.28 ± 0.22 4.06 ± 0.24

“Comb. SST” 88.4 ± 1.2 19.0 ± 0.6 3.19 ± 0.22 4.81 ± 0.26

B
u

→
J
/
ψ
K

M
on

te
C
ar

lo

“Min. ∆R” 79.2 ± 0.5 18.6 ± 0.5 2.74 ± 0.15 2.82 ± 0.15

“Qjet(pt, 0.6)” 89.0 ± 0.6 19.6 ± 0.5 3.43 ± 0.17 3.92 ± 0.17

“Comb. SST” 89.1 ± 0.6 17.8 ± 0.5 2.82 ± 0.15 4.02 ± 0.17

B
s
→
µ
D
s
(φ
π
)

M
on

te
C
ar

lo

“Min. ∆R” 84.9 ± 0.6 14.8 ± 0.5 1.86 ± 0.14 1.96 ± 0.14

“Qjet(pt, 0.6)” 93.0 ± 0.7 13.9 ± 0.5 1.80 ± 0.14 2.25 ± 0.15

“Comb. SST” 93.0 ± 0.7 14.2 ± 0.5 1.86 ± 0.14 2.49 ± 0.16

B
s
→
J
/
ψ
φ

M
on

te
C
ar

lo

“Min. ∆R” 78.7 ± 0.7 13.4 ± 0.7 1.41 ± 0.14 1.57 ± 0.15

“Qjet(pt, 0.6)” 81.5 ± 0.7 13.8 ± 0.6 1.55 ± 0.15 1.84 ± 0.16

“Comb. SST” 81.5 ± 0.7 13.1 ± 0.6 1.40 ± 0.14 2.01 ± 0.16

• “Unbinned” ǫD2 is a direct product of ǫ and D2

• “Binned” ǫD2 is a sum of ǫD2’s in |d| bins

• We see some improvement in “binned” ǫD2 due to SST combination

for all decay signatures
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OST
• OST was developed on Bd → µD∗ data sample [PRD74, 112002 (2006)]

• Must be the same for Bd and Bs

• Also, a combination of a few taggers:

– soft muon

– soft electron

– secondary-vertex
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Combination SST + OST/Qopp
• Same combination technique as for SST

• If OST present make “joint P.D.F.” ycomb = ysst · yost
• If OST not present take ycomb = ysst · yopp
• Introduce variable dcomb = 1−ycomb

1+ycomb

• Infer b-quark production flavor from sign of dcomb

• Obtain event-by-event dilution with function D(dcomb)
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ǫD2 for SST + OST/Qopp
• SST + OST/Qopp are also combined using P.D.F.s

Sample Tagger ǫ, % D, % Unbinned ǫD2, % Binned ǫD2, %
B
u

→
J
/
ψ
K

M
on

te
C
ar

lo
“Comb. SST” 89.1 ± 0.6 17.8 ± 0.5 2.82 ± 0.15 4.02 ± 0.17

“Comb. OST” 18.3 ± 0.2 22.2 ± 1.1 0.90 ± 0.09 1.26 ± 0.09

“Qopp” 99.9 ± 0.6 10.3 ± 0.5 1.06 ± 0.09 1.31 ± 0.10

“All” 100.0 ± 0.6 18.3 ± 0.5 3.33 ± 0.17 4.76 ± 0.18

B
u

→
J
/
ψ
K

d
at

a

“Comb. SST” 88.4 ± 1.2 19.0 ± 0.6 3.19 ± 0.22 4.81 ± 0.26

“Comb. OST” 16.9 ± 0.3 26.8 ± 1.4 1.21 ± 0.13 1.91 ± 0.15

“Qopp” 100.0 ± 1.3 9.8 ± 0.6 0.97 ± 0.12 1.36 ± 0.14

“All” 100.0 ± 1.3 18.9 ± 0.6 3.58 ± 0.23 5.79 ± 0.27

B
s
→
µ
D
s
(φ
π
)

M
on

te
C
ar

lo

“Comb. SST” 93.0 ± 0.7 14.2 ± 0.5 1.86 ± 0.14 2.49 ± 0.16

“Comb. OST” 25.4 ± 0.3 23.2 ± 1.0 1.37 ± 0.12 2.02 ± 0.13

“Qopp” 99.9 ± 0.7 6.9 ± 0.5 0.48 ± 0.07 0.78 ± 0.09

“All” 100.0 ± 0.7 14.8 ± 0.5 2.20 ± 0.15 3.86 ± 0.19

B
s
→
J
/
ψ
φ

M
on

te
C
ar

lo “Comb. SST” 81.5 ± 0.7 13.1 ± 0.6 1.40 ± 0.14 2.01 ± 0.16

“Comb. OST” 24.4 ± 0.3 27.6 ± 1.1 1.86 ± 0.16 2.70 ± 0.17

“Qopp” 98.3 ± 0.8 9.3 ± 0.6 0.84 ± 0.11 1.24 ± 0.13

“All” 98.3 ± 0.8 15.7 ± 0.6 2.43 ± 0.18 4.43 ± 0.23

• Tagging power ǫD2 grows as a result of combination

• Combined tagging power for both Bs decay modes is (4.09 ± 0.14)%
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Calibration curves
To obtain event-by-event dilution for Bs we:

• plot D(dcomb) dependence for Bs → µDs(φπ) Monte Carlo (black)

• plot D(dcomb) dependence for Bs → J/ψφ Monte Carlo (red)

• obtain weighted-average points from both plots (SST fragmentation does not

depend on the Bs decay mode)

• fit them with parabola + constant (blue)
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Dilution grows as |dcomb| grows, quite close to ideal case D = 100% · |dcomb|
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All likelihood parameters

Number Variable Value

1 fsig (Nsig) 0.0409±0.0013 (1967±65)

2,3 M,σ ( MeV/c2) 5361.4±1.0, 30.1±1.0

4 τ (µm) 456±17

5 ∆Γ(ps−1) 0.19±0.07

6 |A⊥(0)| 0.41±0.04

7 |A0(0)|2 − |A||(0)|
2 0.34±0.05

8,9 δ1, δ2 -0.52±0.42, 3.17±0.39

10 φs −0.57+0.24
−0.30

11 ∆Ms(ps−1) ≡ 17.77

12 S 1.24±0.01

13, 14, 15 Bkg mass polynom: a1p, a1l, a2l -0.06±0.03, -1.45±0.08, 0.68±0.11

16, 17, 18 Bkg time exp. norm.: f−, f+, f++ 0.049±0.004, 0.155±0.004, 0.035±0.003

19, 20, 21 Bkg time exp. slope: b−, b+, b++(µm) 65±3, 88±3, 399±21

22, 23, 24, 25 Transversity polynom: X2p,X4p,X2l, X4l 0.85±0.09, -0.60±0.09, 0.39±0.17, -0.23±0.19

26, 27, 28, 29 φ polynom: Y1p, Y2p, Y1l, Y2l -0.23±0.01, -0.10±0.02, -0.15±0.02, -0.00±0.04

30, 31 ψ polynom: Z2p, Z2l 0.05±0.02, 0.27±0.06

32, 33 Interference-like terms in bkg: Intp, Intl -0.011±0.003, -0.018±0.001
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Comparison DØ and CDF
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Bs → J/ψφ systematics
Source τ (ps) ∆Γs (ps−1) A⊥(0) |A0(0)|

2 − |A||(0)|
2 φs

Acceptance ±0.003 ±0.003 ±0.005 ±0.03 ±0.005

Signal mass model -0.01 +0.006 -0.003 -0.001 -0.006

Flavor purity estimate ±0.001 ±0.001 ±0.001 ±0.001 ±0.01

Background model +0.003 +0.02 -0.02 -0.01 +0.02

∆Ms input ±0.01 ±0.001 ±0.001 ±0.001 +0.06
−0.01

Total ±0.01 +0.02
−0.01

+0.01
−0.02 ±0.03 +0.07

−0.02
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